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Dyson-Schwinger equations for the non-linear a-model: 
perturbative solution on a finite lattice 

H Flyvbjerg 
The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 
Copenhagen 0, Denmark 

Received 14 March 1989 

Abstract. The Dyson-Schwinger equations for the O( N)-symmetric non-linear u-model 
to O ( l / N )  are solved perturbatively at weak coupling on a finite lattice. The solution 
equals the known second-order weak-coupling result to all powers in 1/N (third and higher 
powers have coefficient zero). In the Dyson-Schwinger equations zero-momentum modes 
cause no problems. On the contrary, their dominance is the basis for a simple expansion 
scheme. 

1. Introduction 

The O( N)-symmetric non-linear a-model in two dimensions has several interesting 
properties in common with non-Abelian gauge theories in four dimensions. Its simpler 
action and fewer degrees of freedom make it a favourite testing ground for ideas 
ultimately intended for gauge theories. Recently, a subseries of its 1/N expansion 
was summed by means of Dyson-Schwinger equations [l] .  These equations were 
solved numerically on square lattices for N = 3 .  The numerical solutions for the 
magnetic susceptibility and for the mass gap were found to agree surprisingly well 
with Monte Carlo results for these quantities. This indicates that little of the model’s 
full 1/N series is missed by the subseries studied. But these were numerical results. 
An analytical understanding is desirable, but requires other analytical expressions to 
compare with, expressions that describe the model as well, at least, as the Dyson- 
Schwinger equations were found to do, or the comparison is pointless. So there are 
few analytic results to choose from. The full 1/N series of the model is not known 
beyond the order 1, which is reproduced exactly by the Dyson-Schwinger equations. 
The strong-coupling expansion of the two-point function is a natural candidate at 
strong coupling, and one easily convinces oneself that its first few terms are reproduced 
by a hopping expansion of the Dyson-Schwinger equations. At weak coupling the 
weak-coupling expansion on a finite lattice is known to describe Monte Carlo results 
well [l]. In the present paper we solve the Dyson-Schwinger equations analytically 
at weak coupling on a finite lattice, and compare the result with the exact weak-coupling 
series for the two-point function, which is known to second order [2]. 

We find that the Dyson-Schwinger equations yield a two-point function identical 
to the exact weak-coupling result to the order it is known. This exact identity is 
probably an artefact of the particular comparison made. Unfortunately higher orders 
and other n-point functions in a finite volume are not available for comparison. Just 
the same, hitting the bullseye can hardly discredit a method, even if a little luck may 
have been involved. 
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With the hindsight of this result, it is interesting to compare the two ways in which 
this two-point function can be found; especially because the differences hold for any 
n-point function. 

The one-loop calculation of [ 2 ]  required a rather delicate treatment of zero modes. 
The usual infrared regularisation by a small external magnetic field could not be used 
because, as was shown, the two limits externaljield + 0 and coupling + 0 do not commute 
for a finite lattice in two dimensions. (Neither do they for lattices of any size in one 
dimension [3]). Instead collective coordinates were introduced for the N - 1 zero 
modes of the model. The Faddeev-Popov trick was used to handle these coordinates 
and led to the usual Feynman rules plus some extra vertices and the rule to leave out 
zero-momentum modes in Fourier sums in Feynman graphs. 

An earlier treatment of zero modes used the global symmetry to fix the direction 
of one spin on the lattice. One finds the usual Feynman rules, with no extra vertices, 
but the propagator is no longer translation invariant. Instead it is a sum of four of 
the usual, infrared divergent propagators, with the position of the fixed spin as argument 
of three of these propagators [4]. This approach appears to be as complicated as that 

In contrast to these approaches, the Dyson-Schwinger equations solved in the 
present paper are translation invariant and general. They have the same form in finite 
and infinite volumes, and zero modes cause no problem. On the contrary, their 
dominance in a finite volume at weak coupling is the basis for the simple expansion 
scheme used here. 

of [ 2 ] .  

2. Finite-volume weak-coupling expansion 

The Dyson-Schwinger equations for the O( N)-symmetric non-linear a-model in d 
dimensions have been derived to 0(1/N) in [l]. They read 

where '*' means convolution, and 6;' is the bare propagator. In (1) and ( 2 )  terms 
explicitly of order two or more in 1 /N have been neglected. This is why there are 
only two, fairly simple equations. However, since the equations are not homogeneous 
in 1/ N,  their solution (e, 6 )  depends on 1/ N through all non-negative integer powers. 
This dependence is exact to orders (1/ N)' and (1/ N ) '  because (1) and ( 2 )  are. Nothing 
is known about higher orders except that a subseries of the 1/N expansion of the 
model is in effect summed by (1) and ( 2 ) ,  and that little is missed by this sum according 
to the numerical result of reference [ 11. As explained in the introduction, the purpose 
of this paper is to obtain an analytical solution of (1) and (2) in the limit of weak 
coupling and finite volume. 

For the standard action on a square or cubic lattice with periodic boundary 
conditions 6;' is given by 

qo)-'= + qp (3)  
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where d is the dimension of the lattice. eP and fiP are the Fourier transforms of G, 
and 0,. w is a control parameter in this set of equations. The inverse coupling is a 
function of w 

G,=, = L-d ep (5) A = - =  P 
N P 

and so is the magnetic susceptibility 

Here L is the linear extent of the lattice, Ld being the number of sites on the lattice. 
Where the infinite-volume system has a critical point, the finite-volume system has 

xm - Ld-", where 17/2 is the anomalous dimension. Thus from (6), rewritten as 

(7 )  

we see that w is small for A - Acritical, both for Acricical finite and, of course, for Acritical 
infinite. Consequently one may expand in w. We do this under the assumption that 

1 

A X m  

w = -  

Then we can easily solve (1)-(4) for GP expanded in powers of w. From the solution 
for GP below we shall see that (8) is indeed satisfied for small values of w, i.e. the 
assumption is self-consiste_nt. 

Once we have found Gp in powers of w, we may eliminate w in favour of A. This 
is done by using (10) below. Equation (8) used in (5) gives 

Using ep+o- O(l) ,  equation (9) is inverted to 

W L ~ = A - I + A - ' L - ~  2 6 p + O ( A - 3 ) .  (10) 
F e 0  

Notice that expansion in w to O ( w )  may be a good approximation, and (10) to O(A-') 
at the same time a considerably worse approximation. 

The expansion in powers of w is done as follows: using (8) we rewrite ( 2 )  as 

and find 

N Y'0.P 

2 Ld 
N 

eP = 8F30 - w 2  + ( 1 - S,,,) 

Using (13 )  we eliminate 5 from (1) and ( 2 ) ,  and (1) now becomes 



3396 H Flyvbjerg 

In (14) we have kept some explicit terms of C7(w2) to manifest that the RHS for p = 0 
equals GFi,' = W .  Equation (14) can be rearranged to 

N -  2 0  - 
G,l=-_ V , + w + -  (wGp-l)+- 

N - 1  N - 1  

w 
-- ( G , 2 - w 2 )  6 , - , G q + 6 ( w 2 ) .  

2 N  4 f O . P  

For p # 0, equation (15) is solved for 6;' to O ( w )  simply by replacing GP with 3,' 
on the RHS and dropping terms of O ( w 2 ) .  Using the explicit expression (4) for pp one 
finds 

N 2d 

for p # 0 

6,' = 0 for p = O  

where 

sn= L-d c 3,". (17) 
4 f O  

From (16) we see that the assumption (8) under which (16) was derived, is satisfied when 

Equation (8) is an assumption that the size L of the system is small compared with 
the correlation length of the same system with infinite size L. Consequently there are 
no large distances nor small momenta (except zero) in the system, and it makes no 
sense to think about the mass gap or correlation length of dp. This is manifest in (16) 
as a discontinuity in 6 at p = 0. 

From (16) it follows that 

G =  - [ 1+- $d(;d( - 1-- i d )  - S  I ) ]  'i' 
N - 1  

w - - N-2 +- v-' V-'--wW,2+O(w2) 
N P - 4  4 2 N  4 f O . P  

= [ 1 +& (1 -+) -31 3,' 

1 N - 2  - 
+ - - - d  c 3-1 p - 4  4 Q-'-- P L d  vi2+*($) 

2P 4 f O . P  

where we have used (10) to leading order and (5) to get the last identity. 

3. Correlation function, and magnetic susceptibility 

The spin-spin correlation function for the lattice O( N)-symmetric cr-model is related 
to the propagator Gx by 

( S x .  S.,,)= Gx-YIGo. (20) 
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From ( 5 )  it follows that 

1 
(S;  S,)= l+ - (Gx-y -Go)  A 

where we have introduced the notation G: for the massless propagator of perturbation 
theory: 

G:-GE=L-d ~ ( e ' " ' P - l ) ~ ; l .  (22) 

The sum in the last term on the RHS of (21) may also be written L-dCp (ei(x-y) 'p  - 1) e;2. 
P 

Equation (21) is identical to (13) in [2]. 
For the magnetic susceptibility (21) gives 

X m  = c (SX * So) 
X 

1 
= L d  1--L-d 2 E,) ( A p f o  

(731 [ 'p'; = L d  l - - - + y + O  

where 

c1= ( N -  1)S* 

1 
c2 = ( N  - 1) is: -- SI 1 -7 + ( N  - 1)( N -2) 7 s2 [ i d  ( 31 L 

with Si and S2 as defined in (17). Table 1 lists values for Si ,  S2,  and the expressions 
in which they occur in (23), for some two-dimensional square lattices. Notice that for 
d = 2  the infrared contribution to (17) makes SI grow with L as log L and S2 as L2. 
Consequently, for d = 2  the term proportional to S2/Ld in (24) has a finite value for 
L -, a, and contributes a non-negligible amount to c2 for L as in the table. This term, 
and the term proportional to ( N  - 1)( N - 2) in (21), are not found if the usual infrared 
regularisation by a small external magnetic field is employed [2]. 

Table 1. The constants of (17) and (24) for some two-dimensional square lattices. 

50 0.6714 9.75 0.0576 0.00390 
100 0.78 17 38.76 0.1 101 0.00388 
200 0.8920 154.79 0.1748 0.00387 
400 1.0023 618.83 0.2518 0.00387 
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Let us finally compare results from the ordinary large-N expansion to order 1/ N 
with our results from the Dyson-Schwinger equations to order 1/N. Consider the 
spin-spin correlation function and magnetic susceptibility as they are obtained from 
the ordinary large-N expansion to order 1 /  N [5 ,6] .  Suppose we do a weak-coupling 
expansion to second order of these quantities. The results would contain terms only 
of O(1) and O(l/N),  and therefore reproduce neither the third nor the fourth term 
on the RHS of (21), nor c 2 / p 2  in (23) and (24), since these terms also contain N to 
the power -2. 

In conclusion, we have seen that Dyson-Schwinger equations which are correct 
only to O( 1/ N ) ,  give a two-point function which at weak coupling is identical to all 
orders in 1/N with the exact second-order weak-coupling result. We have also seen 
that zero-momentum modes, far from causing problems, can be used as the basis for 
a weak coupling expansion scheme. 
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